Skip to main content

Ujian Analisa Sehala MANOVA

Perbezaan analisa ini dengan ANOVA adalah pembolehubah bersandarnya mempunyai lebih daripada satu.

Manakala, pembolehubah bebas adalah sama seperti ANOVA yang mempunyai pelbagai kumpulan.

Analisa sehala MANOVA juga mempunyai sarat ujian statistik di dalamnya dan tidak dapat memberi maklumat secara spesifik kumpulan yang berbeza signifikan di antara satu sama lain. Ujian ini hanya akan memberi maklumat sekurang-kurang dua kumpulan adalah berbeza. Oleh sebab, kebiasaan penggunaan analisa ini oleh pengkaji akan melibatkan tiga, empat atau lebih kumpulan. Oleh itu penggunaan ujian post-hoc adalah penting untuk mengetahui perbezaan kumpulan selebihnya itu.

Bagi mendapat analisa yang sah dan berkualiti, beberapa andaian perlu di penuhi dahulu sebelum menggunakan analisa MANOVA.

  • Pembolehubah bersandar mestilah dalam skala selang atau nisbah.
  • Pembolehubah bebas a.k.a pembolehubah tidak bersandar mestilah mempunyai beberapa kumpulan yang bebas atau dengan kata lain dalam skala ordinal atau nominal.
  • Tiada wujud multikolinearan walaupun secara idealnya korelasi sederhana di antara pembolehubahubah bersandar juga di perlukan. Andai kata, korelasi rendah, maka ujian sehala ANOVA secara berasingan bagi pembolehubah bersandar boleh di pertimbangkan. Jika, terlampau tinggi (melebihi 0.9), maka masalah multikolinearan telah terjadi.
  • Pemerhatian pula adalah bebas. Subjek atau data bebas daripada satu sama lain, iaitu tidak mempengaruhi di antara satu sama lain. Sama ada di antara kumpulan atau subjek di dalam kumpulan itu sendiri.
  • Saiz sampel yang memcukupi atau lebih.
  • Tidak mempunyai data tersasar (outliers) sama ada univariat atau multivariat. Bagi ujian mengesan data tersasar dalam univariat adalah  antaranya menggunakan boxplots manakala multivariat ujian seperti Mahalanobis distance.
  • Hubungan kelinearan bagi setiap pasangan pembolehubah bersandar dalam setiap kumpulan pembolehubah bebas. Jika andaian ini tidak di patuhi, maka kekuatan ujian akan berkurang. Antara ujian bagi menguji kelinearan adalah dengan menggunakan kaedah grafik iaitu matrik plot taburan (scatterplot matrix) bagi setiap kumpulan pembolehubah bebas. Data perlulah di asingkan dahulu sebelum menguji ini. Ini amat mudah dilakukan menggunakan SPSS.
  • Menguji kenormalan multivariat adalah sesuatu yang licik serta sukar bagi analisa MANOVA dan tidak dapat diukur secara terus. Oleh itu, kenormalan data bagi data pemboleh bersandar dalam setiap kumpulan pembolehubah bebas di analisa sebagai ganti. Antara ujian kenormalan yang boleh di gunakan adalah ujian kenormalan Shapiro-Wilk.
  • Wujudnya kehomogenan atau keseragaman pada matriks varians-kovarian. Ujian kesamaan kovarians Box’s M boleh digunakan. Andai kata, ujian ini gagal, maka pengkaji perlu menjalankan satu lagi ujian iaitu ujian kehomogenan varians Levene’s untuk menentukan masalah.



Popular posts from this blog

G*Power Perisian Bagi Pengiraan Sampel Saiz.

Penggunaan Gpower kerap menekan kepada tiga langkah berikut: Memilih ujian statistik yang sesuai atau padan dengan masalah yang di kaji. Memilih di antara lima jenis analisis kuasa (power analysis) yang di sediakan. Sediakan parameter input yang di perlukan analasis dan klik pada “calculate” Pada Langkah 1, pendekatan yang digunakan untuk memilih ujian statistic (statistical test) adalah melalui dua pendekatan, iaitu distribution based atau design-based approach . Distribution-based approach to the test selection Melalui pendekatan distribution-based , pendekatan pertama adalah melihat pada kumpulan umum ujian statistik menggunakan '' Test family'' menu yang terdapat di window atau tingkap utama.   Ujian statitik ( Statistical test ) menu akan berubah mengikut pilihan di dalam '' Test family'' . Ujian-ujian yang ada akan selaras mengikut pada '' test family'' yang di pilih sahaja. Design-based approach to the test se...

ANOVA vs MANOVA

Perbezaan utama di antara ANOVA dan MANOVA adalah jumlah bilangan pembolehubah bersandar ( dependent variable ). Walaupun begitu, jika terdapat pembolehubah bersandar lebih daripada satu, masih bukan masalah dan merupakan pilihan lain jika pengkaji mahu untuk menguji secara berasingan menggunakan analisa ANOVA bagi setiap pembolehubah bersandar itu. Jadi, kenapa perlu menggunakan pengiraan MANOVA ini berbanding beberapa analisa menggunakan ANOVA jika terdapat pembolehubah bersandar yang lebih daripada satu seperti dua, tiga atau empat pembolehubah bersandar? Terdapat dua sebab utama, MANOVA berpotensi menggantikan ANOVA dalam beberapa keadaan. Pertama melibatkan teori yang logik dan kedua melibatkan statistiknya. Sebagai contoh: Skormatematik + skorfizik + skorkimia sebagai fungsi kepada ( as a function of ) minuman tambahan ( tiga tahap / level ) Minuman tambahan, pembolehubah tidak bersandar atau bebas dengan tiga tahap ( levels ) : minuman kurma, minuman madu dan minuma...