Analisis kluster adalah analisis yang mengumpulkan objek atau data kepada kumpulan-kumpulan tertentu yang sama cirinya dan membezakan data daripada kluster-kluster lainnya. Kumpulan ini di kenali sebagai kluster. Analisis ini juga dikenali sebagai analisis segmentasi atau analisis taksonomi bergantung pada bidang dan objektif yang berlainan. Teknik analisa ini merupakan sebahagian daripada teknik yang banyak digunakan dalam analisis data secara matematik statistik serta digunakan dalam pelbagai bidang seperti, pengenalan pola, analisis gambar, pembelajaran mesin dan sebagainya.
Perlu juga di beri perhatian bahawa tidak ada kelas yang sudah ditentukan sebelum analisis kluster dibuat.
Kegunaan analisis kluster adalah untuk mengesan kluster atau kumpulan yang wujud dalam data berjumlah besar dan mempunyai dimensi tinggi serta agak sukar dikesan melalui visual. Data dalam jumlah yang kecil antara analisa atau kaedah yang boleh digunakan adalah distance matrix atau graf atau plot bertaburan (scatterplot) untuk mengesan kluster-kluster jika terdapat dalamnya.
Antara contoh penggunaan analisis kluster seperti dalam bidang psikiatri, karakter atau sifat gejala oleh pesakit akan digunakan untuk mengelaskan pesakit kepada kluster-kluster tertentu, lalu memudahkan rawatan khusus diberikan mengikut kluster-kluster yang ada.
Lain daripada itu, dalam bidang pemasaran pula, analisis kluster akan membantu pemasar untuk merekacipta iklan produk atau perkhidmatan mengikut kluster atau kumpulan secara lebih tertempu. Ini secara tidak langsung akan mengoptimalkan setiap perbelanjaan iklan tanpa membazir iklan pada sasaran yang tidak memahami iklan tersebut atau tidak berminat dengan iklan tersebut.
Dalam pada itu, perlu diingatkan bahawa analisa kluster bukanlah mekanisma sesuai untuk membezakan pembolehubah yang relevan atau tidak relevan. Oleh itu, pemilihan pembolehubah sesuai dalam analisis kluster perlulah bersandarkan kepada pertimbangan konseptual. Ini amat penting kerana kluster yang terbentuk akan boleh jadi amat bergantung pada pembolehubah yang disertakan.
Jenis-jenis Kluster
Kembali kepada perbincangan berkaitan analisis kluster, analisis ini terdapat tiga jenis. Pertama adalah analisis kluster hierarki. Kluster ini sesuai bagi saiz sampel kurang daripada 250. Dalam pada itu, bilangan kluster dalam data yang telah dikutip dapat dikenalpasti melalui analisis ini.
Kedua, adalah analisis kluster k-min atau dalam bahasa inggeris dikenali k-means clustering. Bagi analisis ini pula, data akan dipecahkan ke beberapa bilangan kluster yang di tetapkan sebelum analisa di jalankan. Analisis jenis kedua ini sesuai bagi data yang melebihi angka 250.
Ketiga, dan terakhir adalah analisis kluster dua langkah atau dikenali sebagai two-steps clustering dalam bahasa inggeris. Analisis ini pula bertujuan untuk membantu penganalisa untuk mengenal pasti dan membina pra-kluster beserta mengkategorikan pra-kluster itu.
Syarat-syarat Sebelum Menggunakan Analisis Kluster
Data dalam bentuk skala ordinal, skala selang atau skala nisbah
Skala perlu diselaraskan jika di ukur pada skala yang berbeza