Skip to main content

Contoh Mudah menggunakan R bagi analisa Spanova

Berikut adalah contoh tabel data yang dapat digunakan dalam analisis Split-plot ANOVA tersebut:

 

 

 Dalam contoh ini, pembolehubah tidak bersandar (independent variable) yang terikat pada sampel utama adalah jenis penyakit (Penyakit Jantung atau Penyakit kencing manis), sementara variabel independen yang terikat pada sampel subplot adalah dos ubat (1 mg atau 5 mg). Pembolehubah bersandar (dependent variable) adalah keberkesanan ubat, yang diukur dengan skala 0-1.

 

Berikut adalah contoh analisis Split-plot ANOVA menggunakan R, dengan menggunakan data hipotetis tentang keberkesanan suatu ubat baru pada pesakit dengan berbagai jenis penyakit:

 

# Memuat library yang diperlukan

library(ez)


# Memuat data

data <- read.csv("data_ubat.csv")


# Menampilkan struktur data

str(data)


# Menjalankan analisis Split-plot ANOVA

aov_result <- ezANOVA(data = data,

                   dv = .(keberkesanan),

                   wid = .(id_pesakit),

                   within = .(dos),

                   between = .(jenis_penyakit),

                   type = 3,

                   detailed = TRUE,

                   return_aov = TRUE)


# Menampilkan hasil analisis

aov_result

Popular posts from this blog

G*Power Perisian Bagi Pengiraan Sampel Saiz.

Penggunaan Gpower kerap menekan kepada tiga langkah berikut: Memilih ujian statistik yang sesuai atau padan dengan masalah yang di kaji. Memilih di antara lima jenis analisis kuasa (power analysis) yang di sediakan. Sediakan parameter input yang di perlukan analasis dan klik pada “calculate” Pada Langkah 1, pendekatan yang digunakan untuk memilih ujian statistic (statistical test) adalah melalui dua pendekatan, iaitu distribution based atau design-based approach . Distribution-based approach to the test selection Melalui pendekatan distribution-based , pendekatan pertama adalah melihat pada kumpulan umum ujian statistik menggunakan '' Test family'' menu yang terdapat di window atau tingkap utama.   Ujian statitik ( Statistical test ) menu akan berubah mengikut pilihan di dalam '' Test family'' . Ujian-ujian yang ada akan selaras mengikut pada '' test family'' yang di pilih sahaja. Design-based approach to the test se...

Krejcie & Morgan sample size calculator

Krejcie & Morgan Sample Size Calculator Enter Population Size (N): Calculate Sample Size Recommended Sample Size (n): 📘 About This Calculator This calculator uses the Krejcie & Morgan (1970) formula to estimate the minimum sample size required when the total population size is known. It is commonly used in social sciences, education, and health research. The formula is: n = (X² × N × P × (1 − P)) / (d² × (N − 1) + X² × P × (1 − P)) X² = 3.841 (for 95% confidence level) P = 0.5 (maximum variability) d = 0.05 (±5% precision) 📚 Citation Krejcie, R.V., & Morgan, D.W. (1970). Determining Sample Size for Research Activities . Educational and Psychological Measurement, 30 (3), 607–610. https://doi.org/10.1177/001316447003000308

ANOVA vs MANOVA

Perbezaan utama di antara ANOVA dan MANOVA adalah jumlah bilangan pembolehubah bersandar ( dependent variable ). Walaupun begitu, jika terdapat pembolehubah bersandar lebih daripada satu, masih bukan masalah dan merupakan pilihan lain jika pengkaji mahu untuk menguji secara berasingan menggunakan analisa ANOVA bagi setiap pembolehubah bersandar itu. Jadi, kenapa perlu menggunakan pengiraan MANOVA ini berbanding beberapa analisa menggunakan ANOVA jika terdapat pembolehubah bersandar yang lebih daripada satu seperti dua, tiga atau empat pembolehubah bersandar? Terdapat dua sebab utama, MANOVA berpotensi menggantikan ANOVA dalam beberapa keadaan. Pertama melibatkan teori yang logik dan kedua melibatkan statistiknya. Sebagai contoh: Skormatematik + skorfizik + skorkimia sebagai fungsi kepada ( as a function of ) minuman tambahan ( tiga tahap / level ) Minuman tambahan, pembolehubah tidak bersandar atau bebas dengan tiga tahap ( levels ) : minuman kurma, minuman madu dan minuma...