Skip to main content

Data Standardization in Statistics

 

        Data standardization is a statistical method that is used to transform data so that it has a mean of zero and a standard deviation of one. This is often done to make the data more comparable or to simplify the analysis.

        There are several ways to standardize data, but the most common method is to subtract the mean from each data point and then divide by the standard deviation. This results in a new set of values with a mean of zero and a standard deviation of one.

        Standardization is useful when comparing data from different sources or when the data has different units of measurement. For example, if you want to compare the heights of people in two different countries, you could standardize the data by converting the heights to standard deviation units (also known as z-scores). This would allow you to compare the data on a common scale, regardless of the units of measurement used in the original data.

        It's important to note that standardization does not affect the shape of the data distribution, only the location and scale. Therefore, standardization should not be used to normalize data that is not normally distributed. In these cases, a data transformation may be more appropriate.

Popular posts from this blog

G*Power Perisian Bagi Pengiraan Sampel Saiz.

Penggunaan Gpower kerap menekan kepada tiga langkah berikut: Memilih ujian statistik yang sesuai atau padan dengan masalah yang di kaji. Memilih di antara lima jenis analisis kuasa (power analysis) yang di sediakan. Sediakan parameter input yang di perlukan analasis dan klik pada “calculate” Pada Langkah 1, pendekatan yang digunakan untuk memilih ujian statistic (statistical test) adalah melalui dua pendekatan, iaitu distribution based atau design-based approach . Distribution-based approach to the test selection Melalui pendekatan distribution-based , pendekatan pertama adalah melihat pada kumpulan umum ujian statistik menggunakan '' Test family'' menu yang terdapat di window atau tingkap utama.   Ujian statitik ( Statistical test ) menu akan berubah mengikut pilihan di dalam '' Test family'' . Ujian-ujian yang ada akan selaras mengikut pada '' test family'' yang di pilih sahaja. Design-based approach to the test se...

Krejcie & Morgan sample size calculator

Krejcie & Morgan Sample Size Calculator Enter Population Size (N): Calculate Sample Size Recommended Sample Size (n): 📘 About This Calculator This calculator uses the Krejcie & Morgan (1970) formula to estimate the minimum sample size required when the total population size is known. It is commonly used in social sciences, education, and health research. The formula is: n = (X² × N × P × (1 − P)) / (d² × (N − 1) + X² × P × (1 − P)) X² = 3.841 (for 95% confidence level) P = 0.5 (maximum variability) d = 0.05 (±5% precision) 📚 Citation Krejcie, R.V., & Morgan, D.W. (1970). Determining Sample Size for Research Activities . Educational and Psychological Measurement, 30 (3), 607–610. https://doi.org/10.1177/001316447003000308

ANOVA vs MANOVA

Perbezaan utama di antara ANOVA dan MANOVA adalah jumlah bilangan pembolehubah bersandar ( dependent variable ). Walaupun begitu, jika terdapat pembolehubah bersandar lebih daripada satu, masih bukan masalah dan merupakan pilihan lain jika pengkaji mahu untuk menguji secara berasingan menggunakan analisa ANOVA bagi setiap pembolehubah bersandar itu. Jadi, kenapa perlu menggunakan pengiraan MANOVA ini berbanding beberapa analisa menggunakan ANOVA jika terdapat pembolehubah bersandar yang lebih daripada satu seperti dua, tiga atau empat pembolehubah bersandar? Terdapat dua sebab utama, MANOVA berpotensi menggantikan ANOVA dalam beberapa keadaan. Pertama melibatkan teori yang logik dan kedua melibatkan statistiknya. Sebagai contoh: Skormatematik + skorfizik + skorkimia sebagai fungsi kepada ( as a function of ) minuman tambahan ( tiga tahap / level ) Minuman tambahan, pembolehubah tidak bersandar atau bebas dengan tiga tahap ( levels ) : minuman kurma, minuman madu dan minuma...