Skip to main content

P-value in Statistics: What is it?

 

        In statistics, the p-value is a measure of the statistical significance of the results of a statistical test. It represents the probability that the observed results occurred by chance, given a certain hypothesis or null hypothesis.

        The null hypothesis is a statement that assumes that there is no relationship between the variables being tested. For example, if you are testing the effectiveness of a new drug, the null hypothesis might be that the drug has no effect on the condition it is intended to treat.

        The p-value helps you to determine whether the observed results are strong enough to reject the null hypothesis. If the p-value is low, it means that the observed results are unlikely to have occurred by chance, and you can reject the null hypothesis in favor of an alternative hypothesis (such as the hypothesis that the drug is effective). On the other hand, if the p-value is high, it means that the observed results are more likely to be due to chance, and you cannot reject the null hypothesis.

        In general, a p-value of less than 0.05 is considered to be statistically significant, which means that the observed results are unlikely to have occurred by chance and you can reject the null hypothesis. However, the specific p-value threshold for statistical significance may vary depending on the research context and the goals of the study. It's important to consider the p-value in the context of the research question and the research design, and to carefully interpret the results of any statistical tests you perform.

Popular posts from this blog

G*Power Perisian Bagi Pengiraan Sampel Saiz.

Penggunaan Gpower kerap menekan kepada tiga langkah berikut: Memilih ujian statistik yang sesuai atau padan dengan masalah yang di kaji. Memilih di antara lima jenis analisis kuasa (power analysis) yang di sediakan. Sediakan parameter input yang di perlukan analasis dan klik pada “calculate” Pada Langkah 1, pendekatan yang digunakan untuk memilih ujian statistic (statistical test) adalah melalui dua pendekatan, iaitu distribution based atau design-based approach . Distribution-based approach to the test selection Melalui pendekatan distribution-based , pendekatan pertama adalah melihat pada kumpulan umum ujian statistik menggunakan '' Test family'' menu yang terdapat di window atau tingkap utama.   Ujian statitik ( Statistical test ) menu akan berubah mengikut pilihan di dalam '' Test family'' . Ujian-ujian yang ada akan selaras mengikut pada '' test family'' yang di pilih sahaja. Design-based approach to the test se...

Krejcie & Morgan sample size calculator

Krejcie & Morgan Sample Size Calculator Enter Population Size (N): Calculate Sample Size Recommended Sample Size (n): 📘 About This Calculator This calculator uses the Krejcie & Morgan (1970) formula to estimate the minimum sample size required when the total population size is known. It is commonly used in social sciences, education, and health research. The formula is: n = (X² × N × P × (1 − P)) / (d² × (N − 1) + X² × P × (1 − P)) X² = 3.841 (for 95% confidence level) P = 0.5 (maximum variability) d = 0.05 (±5% precision) 📚 Citation Krejcie, R.V., & Morgan, D.W. (1970). Determining Sample Size for Research Activities . Educational and Psychological Measurement, 30 (3), 607–610. https://doi.org/10.1177/001316447003000308

ANOVA vs MANOVA

Perbezaan utama di antara ANOVA dan MANOVA adalah jumlah bilangan pembolehubah bersandar ( dependent variable ). Walaupun begitu, jika terdapat pembolehubah bersandar lebih daripada satu, masih bukan masalah dan merupakan pilihan lain jika pengkaji mahu untuk menguji secara berasingan menggunakan analisa ANOVA bagi setiap pembolehubah bersandar itu. Jadi, kenapa perlu menggunakan pengiraan MANOVA ini berbanding beberapa analisa menggunakan ANOVA jika terdapat pembolehubah bersandar yang lebih daripada satu seperti dua, tiga atau empat pembolehubah bersandar? Terdapat dua sebab utama, MANOVA berpotensi menggantikan ANOVA dalam beberapa keadaan. Pertama melibatkan teori yang logik dan kedua melibatkan statistiknya. Sebagai contoh: Skormatematik + skorfizik + skorkimia sebagai fungsi kepada ( as a function of ) minuman tambahan ( tiga tahap / level ) Minuman tambahan, pembolehubah tidak bersandar atau bebas dengan tiga tahap ( levels ) : minuman kurma, minuman madu dan minuma...