Skip to main content

Sample Size Computation using G*Power

 

    G*Power is a statistical power analysis tool that can be used to determine the sample size required for a given study design. It allows you to specify the desired statistical power, alpha level, and effect size, and then calculates the required sample size.

Here's an example of how to use G*Power to perform a sample size calculation:

  1. Open G*Power and select the "Sample Size/Power" tab.

  2. Select the statistical test that you want to use for your study (e.g. t-test, ANOVA, etc.).

  3. Specify the desired statistical power for your study (e.g. 0.8).

  4. Specify the alpha level for your study (e.g. 0.05).

  5. Specify the effect size that you want to detect in your study. This can be calculated based on your research question and the expected size of the effect.

  6. Click the "Calculate" button to calculate the required sample size.

    For example, let's say we want to conduct a t-test to compare the means of two groups, and we want to have a statistical power of 0.8 and an alpha level of 0.05. We expect the effect size to be medium (d=0.5). Based on these parameters, G*Power will calculate the required sample size for each group.

Comments

Popular posts from this blog

G*Power Perisian Bagi Pengiraan Sampel Saiz.

Penggunaan Gpower kerap menekan kepada tiga langkah berikut: Memilih ujian statistik yang sesuai atau padan dengan masalah yang di kaji. Memilih di antara lima jenis analisis kuasa (power analysis) yang di sediakan. Sediakan parameter input yang di perlukan analasis dan klik pada “calculate” Pada Langkah 1, pendekatan yang digunakan untuk memilih ujian statistic (statistical test) adalah melalui dua pendekatan, iaitu distribution based atau design-based approach . Distribution-based approach to the test selection Melalui pendekatan distribution-based , pendekatan pertama adalah melihat pada kumpulan umum ujian statistik menggunakan '' Test family'' menu yang terdapat di window atau tingkap utama.   Ujian statitik ( Statistical test ) menu akan berubah mengikut pilihan di dalam '' Test family'' . Ujian-ujian yang ada akan selaras mengikut pada '' test family'' yang di pilih sahaja. Design-based approach to the test se...

Ujian Analisa Sehala MANOVA

Perbezaan analisa ini dengan ANOVA adalah pembolehubah bersandarnya mempunyai lebih daripada satu . Manakala, pembolehubah bebas adalah sama seperti ANOVA yang mempunyai pelbagai kumpulan. Analisa sehala MANOVA juga mempunyai sarat ujian statistik di dalamnya dan tidak dapat memberi maklumat secara spesifik kumpulan yang berbeza signifikan di antara satu sama lain. Ujian ini hanya akan memberi maklumat sekurang-kurang dua kumpulan adalah berbeza. Oleh sebab, kebiasaan penggunaan analisa ini oleh pengkaji akan melibatkan tiga, empat atau lebih kumpulan. Oleh itu penggunaan ujian post-hoc adalah penting untuk mengetahui perbezaan kumpulan selebihnya itu. Bagi mendapat analisa yang sah dan berkualiti, beberapa andaian perlu di penuhi dahulu sebelum menggunakan analisa MANOVA. Pembolehubah bersandar mestilah dalam skala selang atau nisbah. Pembolehubah bebas a.k.a pembolehubah tidak bersandar mestilah mempunyai beberapa kumpulan yang bebas atau dengan kata lain dalam skala ordina...

ANOVA vs MANOVA

Perbezaan utama di antara ANOVA dan MANOVA adalah jumlah bilangan pembolehubah bersandar ( dependent variable ). Walaupun begitu, jika terdapat pembolehubah bersandar lebih daripada satu, masih bukan masalah dan merupakan pilihan lain jika pengkaji mahu untuk menguji secara berasingan menggunakan analisa ANOVA bagi setiap pembolehubah bersandar itu. Jadi, kenapa perlu menggunakan pengiraan MANOVA ini berbanding beberapa analisa menggunakan ANOVA jika terdapat pembolehubah bersandar yang lebih daripada satu seperti dua, tiga atau empat pembolehubah bersandar? Terdapat dua sebab utama, MANOVA berpotensi menggantikan ANOVA dalam beberapa keadaan. Pertama melibatkan teori yang logik dan kedua melibatkan statistiknya. Sebagai contoh: Skormatematik + skorfizik + skorkimia sebagai fungsi kepada ( as a function of ) minuman tambahan ( tiga tahap / level ) Minuman tambahan, pembolehubah tidak bersandar atau bebas dengan tiga tahap ( levels ) : minuman kurma, minuman madu dan minuma...