Skip to main content

Structural Equation Modeling: What Is It?

        Structural equation modeling (SEM) is a statistical technique used to test and estimate relationships between variables. It is a multivariate method that allows researchers to simultaneously examine multiple relationships in a single model.

        SEM consists of two types of equations: structural equations and measurement equations. Structural equations describe the relationships between latent (unobserved) variables, while measurement equations describe the relationships between observed variables and latent variables.

        SEM allows researchers to test complex models that include multiple latent variables and their relationships with each other and with observed variables. It is commonly used in social and behavioral sciences to test theories and hypotheses about relationships between variables.

        To use SEM, researchers typically start by specifying a model that includes a set of latent variables and their relationships with observed variables. They then collect data and estimate the model using statistical software. SEM allows researchers to test whether the model fits the data well, and to make inferences about the relationships between variables based on the model fit.

        There are a number of statistical software packages that can be used to perform structural equation modeling (SEM). Some popular options include:

  1. AMOS (Analysis of Moment Structures) - This is a software package specifically designed for SEM. It is available as a standalone software or as an add-on to SPSS.

  2. LISREL - This is another software package specifically designed for SEM. It is available for Windows and MacOS.

  3. R - This is a free, open-source statistical software package that includes a number of libraries for SEM, including the "lavaan" library.

  4. Mplus - This is a statistical software package that includes a number of features for SEM, including latent variable modeling, multilevel modeling, and multivariate analysis.

  5. STATA - This is a statistical software package that includes a number of features for SEM, including latent variable modeling and multivariate analysis.

 

Popular posts from this blog

G*Power Perisian Bagi Pengiraan Sampel Saiz.

Penggunaan Gpower kerap menekan kepada tiga langkah berikut: Memilih ujian statistik yang sesuai atau padan dengan masalah yang di kaji. Memilih di antara lima jenis analisis kuasa (power analysis) yang di sediakan. Sediakan parameter input yang di perlukan analasis dan klik pada “calculate” Pada Langkah 1, pendekatan yang digunakan untuk memilih ujian statistic (statistical test) adalah melalui dua pendekatan, iaitu distribution based atau design-based approach . Distribution-based approach to the test selection Melalui pendekatan distribution-based , pendekatan pertama adalah melihat pada kumpulan umum ujian statistik menggunakan '' Test family'' menu yang terdapat di window atau tingkap utama.   Ujian statitik ( Statistical test ) menu akan berubah mengikut pilihan di dalam '' Test family'' . Ujian-ujian yang ada akan selaras mengikut pada '' test family'' yang di pilih sahaja. Design-based approach to the test se...

Krejcie & Morgan sample size calculator

Krejcie & Morgan Sample Size Calculator Enter Population Size (N): Calculate Sample Size Recommended Sample Size (n): 📘 About This Calculator This calculator uses the Krejcie & Morgan (1970) formula to estimate the minimum sample size required when the total population size is known. It is commonly used in social sciences, education, and health research. The formula is: n = (X² × N × P × (1 − P)) / (d² × (N − 1) + X² × P × (1 − P)) X² = 3.841 (for 95% confidence level) P = 0.5 (maximum variability) d = 0.05 (±5% precision) 📚 Citation Krejcie, R.V., & Morgan, D.W. (1970). Determining Sample Size for Research Activities . Educational and Psychological Measurement, 30 (3), 607–610. https://doi.org/10.1177/001316447003000308

ANOVA vs MANOVA

Perbezaan utama di antara ANOVA dan MANOVA adalah jumlah bilangan pembolehubah bersandar ( dependent variable ). Walaupun begitu, jika terdapat pembolehubah bersandar lebih daripada satu, masih bukan masalah dan merupakan pilihan lain jika pengkaji mahu untuk menguji secara berasingan menggunakan analisa ANOVA bagi setiap pembolehubah bersandar itu. Jadi, kenapa perlu menggunakan pengiraan MANOVA ini berbanding beberapa analisa menggunakan ANOVA jika terdapat pembolehubah bersandar yang lebih daripada satu seperti dua, tiga atau empat pembolehubah bersandar? Terdapat dua sebab utama, MANOVA berpotensi menggantikan ANOVA dalam beberapa keadaan. Pertama melibatkan teori yang logik dan kedua melibatkan statistiknya. Sebagai contoh: Skormatematik + skorfizik + skorkimia sebagai fungsi kepada ( as a function of ) minuman tambahan ( tiga tahap / level ) Minuman tambahan, pembolehubah tidak bersandar atau bebas dengan tiga tahap ( levels ) : minuman kurma, minuman madu dan minuma...