Skip to main content

Posts

Sample Size Calculation for Questionnaires using R

  To calculate sample size for a questionnaire study, you will need to consider a few factors: The type of statistical test you will be using: Different statistical tests have different assumptions and requirements, so you will need to choose a test that is appropriate for your data and research question. The desired level of precision: The sample size should be large enough to provide the desired level of precision in your estimates. For example, if you want to be able to detect small differences between groups, you will need a larger sample size than if you are only interested in detecting large differences. The expected response rate: The sample size should be large enough to account for the expected response rate. If you expect a low response rate, you will need a larger sample size to ensure that you have sufficient data for your analysis. The population size: If the population is small, you may need a larger sample size to ensure that your sample is representative of the populati
Recent posts

Contoh Mudah menggunakan R bagi analisa Spanova

Berikut adalah contoh tabel data yang dapat digunakan dalam analisis Split-plot ANOVA tersebut:       Dalam contoh ini, pembolehubah tidak bersandar (independent variable) yang terikat pada sampel utama adalah jenis penyakit (Penyakit Jantung atau Penyakit kencing manis), sementara variabel independen yang terikat pada sampel subplot adalah dos ubat (1 mg atau 5 mg). Pembolehubah bersandar (dependent variable) adalah keberkesanan ubat, yang diukur dengan skala 0-1.   Berikut adalah contoh analisis Split-plot ANOVA menggunakan R, dengan menggunakan data hipotetis tentang keberkesanan suatu ubat baru pada pesakit dengan berbagai jenis penyakit:   # Memuat library yang diperlukan library(ez) # Memuat data data <- read.csv("data_ubat.csv") # Menampilkan struktur data str(data) # Menjalankan analisis Split-plot ANOVA aov_result <- ezANOVA(data = data,                    dv = .(keberkesanan),                    wid = .(id_pesakit),                    within = .(dos),

Analisa Split-plot ANOVA (Spanova)

Split-plot ANOVA adalah kaedah statistik yang digunakan untuk menguji hipotesis tentang perbezaan yang signifikan antara rata-rata dari beberapa sampel yang terpisah, dengan menggunakan lebih dari satu pembolehubah tidak bersandar. Split-plot ANOVA merupakan versi dari ANOVA (Analysis of Variance) yang mengelompokkan sampel menjadi dua kategori: sampel utama (main plot) dan sampel subplot. Split-plot ANOVA digunakan dalam situasi di mana salah satu pembolehubah tidak bersandar terikat pada sampel utama, sementara pembolehubah tidak bersandar lainnya terikat pada sampel subplot. Misalnya, jika Anda ingin menguji apakah terdapat perbezaan yang signifikan antara rata-rata keuntungan dari beberapa perusahaan yang berbeza, maka pembolehubah tidak bersandar yang terikat pada sampel utama mungkin adalah jenis perusahaan (misalnya, perusahaan manufaktur, perusahaan jasa, dll.), sementara pembolehubah tidak bersandar yang terikat pada sampel subplot mungkin adalah jenis produk atau jasa yang di

Mann-Whitney U and the Kruskal-Wallis tests

       Mann-Whitney U and Kruskal-Wallis are nonparametric statistical tests that can be used to compare two or more groups of data, respectively. These tests are often used when the data does not meet the assumptions of parametric tests, such as the assumption of normality.      In order to use these tests in SPSS (a statistical software package), you will need to have data that meets the following requirements: Mann-Whitney U: This test requires two independent groups of data. The groups should be independent in the sense that the members of one group are not related to the members of the other group. Kruskal-Wallis: This test requires at least three independent groups of data. As with the Mann-Whitney U test, the groups should be independent and the members of one group should not be related to the members of the other groups.      The objectives of these tests are to determine whether there are significant differences between the groups in terms of the mean ranks of the data. If th

Data Standardization in Statistics

            Data standardization is a statistical method that is used to transform data so that it has a mean of zero and a standard deviation of one. This is often done to make the data more comparable or to simplify the analysis.           There are several ways to standardize data, but the most common method is to subtract the mean from each data point and then divide by the standard deviation. This results in a new set of values with a mean of zero and a standard deviation of one.           Standardization is useful when comparing data from different sources or when the data has different units of measurement. For example, if you want to compare the heights of people in two different countries, you could standardize the data by converting the heights to standard deviation units (also known as z-scores). This would allow you to compare the data on a common scale, regardless of the units of measurement used in the original data.           It's important to note that standardizati

Data Transformation Techniques

Data transformation is a technique that is used to convert the data from one form to another, typically to improve the normality of the data or to stabilize the variance. There are many techniques that can be used to transform data, including: Square root transformation: This transformation is used to normalize data that is skewed to the right (positive skewness). To apply this transformation, you take the square root of each data point. Log transformation: This transformation is used to normalize data that is skewed to the right (positive skewness) or has a long tail on the right side of the distribution. To apply this transformation, you take the natural log of each data point. Box-Cox transformation: This transformation is a family of transformations that can be used to normalize data that is skewed to the right (positive skewness) or skewed to the left (negative skewness). To apply this transformation, you need to specify a parameter, lambda, which determines the type of transforma

Contoh-contoh Analisa yang memerlukan Data Bertaburan Normal

  Beberapa ujian statistik yang memerlukan data bertaburan normal (normal distribution) adalah: Uji t (Student's t-test) Uji t dua sampel (Two-Sample t-test) Uji t bebas (Independent t-test) Uji t terkait (Paired t-test) Uji F (ANOVA) Uji chi-kuadrat (Chi-Square Test) Uji regresi linier (Linear Regression) Ujian-ujian di atas memerlukan data yang bertaburan normal kerana andaian dasar dari ujian tersebut adalah bahawa data tersebut berasal dari taburan normal (normal distribution). Jika data tidak bertaburan normal, maka hasil ujian tersebut mungkin tidak tepat dan tidak dapat di jamin kualitinya. Oleh kerana itu, sebelum melakukan ujian di atas, penting untuk memeriksa apakah data yang akan digunakan memenuhi asumsi distribusi normal atau tidak. Jika data tidak bertaburan normal, maka kita dapat menggunakan transformasi data atau ujian yang lain yang tidak memerlukan asumsi distribusi normal, seperti ujian non-parametrik.

Type of Data Required for Properly Distributed Data

            A normally distributed dataset is one where the data follows a bell-shaped curve when plotted on a graph. Normal distribution is characterized by a mean, median, and mode that are all equal, and by a symmetrical distribution of data around the mean.           The data type needed for normally distributed data depends on the type of data being collected and the analysis you plan to perform. In general, numerical data (such as continuous variables or integers or ratio scale or interval scale) is more likely to be normally distributed than categorical data (such as nominal or ordinal variables).           If you are working with normally distributed data, you can use a variety of statistical techniques to analyze the data, including parametric tests (which assume that the data is normally distributed) and nonparametric tests (which do not assume a particular distribution).           It's important to note that not all data is normally distributed, and that it is often nece

P-value in Statistics: What is it?

            In statistics, the p-value is a measure of the statistical significance of the results of a statistical test. It represents the probability that the observed results occurred by chance, given a certain hypothesis or null hypothesis.           The null hypothesis is a statement that assumes that there is no relationship between the variables being tested. For example, if you are testing the effectiveness of a new drug, the null hypothesis might be that the drug has no effect on the condition it is intended to treat.           The p-value helps you to determine whether the observed results are strong enough to reject the null hypothesis. If the p-value is low, it means that the observed results are unlikely to have occurred by chance, and you can reject the null hypothesis in favor of an alternative hypothesis (such as the hypothesis that the drug is effective). On the other hand, if the p-value is high, it means that the observed results are more likely to be due to chance,

The Solutions to Statistics' Multicollinearity

            Multicollinearity is a statistical phenomenon that occurs when two or more predictor variables in a regression model are highly correlated with each other. This can lead to unstable and inaccurate coefficient estimates, as well as difficulties in interpreting the results of the model. There are several ways to address multicollinearity in a statistical model: Remove one or more of the correlated predictor variables: This can help to reduce multicollinearity by reducing the number of correlated variables in the model. However, this may also reduce the explanatory power of the model. Combine correlated predictor variables into a single composite variable: This can help to reduce multicollinearity by reducing the number of correlated variables in the model. However, this may also reduce the interpretability of the model. Use regularization techniques: Regularization techniques, such as ridge regression or lasso, can help to reduce multicollinearity by penalizing large coeffici

Determining The Sample Size for Linear Regression

            There are several factors that can influence the sample size required for a linear regression analysis, including the desired level of precision, the variability of the data, the number of predictor variables, and the desired level of statistical power.           One approach to calculating sample size for linear regression is to use a sample size calculator, which can be found online or in statistical software packages. These calculators typically allow you to specify the desired level of precision, the variability of the data, the number of predictor variables, and the desired level of statistical power, and they will provide an estimate of the sample size required to meet these criteria.           Another approach is to use a formula to calculate sample size based on the desired level of precision and the expected variability of the data. For example, the following formula can be used to calculate sample size for a linear regression analysis with a single predictor varia

How Do Partial Least Square Structural Equation Modeling and Covariance-based Structural Equation Modeling Vary from One Another?

            Covariance-based structural equation modeling (CB-SEM) and partial least squares structural equation modeling (PLS-SEM) are two methods for estimating structural equation models.           CB-SEM is a method for estimating and testing the relationships between observed variables and latent constructs in a model. It is based on the assumption that the observed variables are measured with error and that the relationships between the observed variables and latent constructs can be represented by a set of regression equations. CB-SEM estimates the model parameters by maximizing the likelihood of the data given the model.           PLS-SEM is a method for estimating and testing the relationships between observed variables and latent constructs in a model. It is based on the assumption that the observed variables are correlated with each other and with the latent constructs, and that the relationships between the observed variables and latent constructs can be represented by a se

Structural Equation Modeling: A Quick Overview of the Lavaan Package in R

  Structural equation modeling (SEM) is a multivariate statistical technique that can be used to test and estimate relationships between observed variables and latent (unobserved) constructs. SEM allows you to test complex hypotheses about relationships between variables and can be used to test a variety of models, including confirmatory factor analysis, path analysis, and latent growth curve models. To apply SEM in R, you can use the lavaan package. This package provides a wide range of functions for estimating, modifying, and evaluating SEM models. Here is an example of how you can use lavaan to fit a SEM model in R: 1. Install and load the lavaan package: install.packages("lavaan") library(lavaan)   2. Specify the model using the lavaan syntax. The syntax consists of a series of statements that define the model, including the relationships between observed variables and latent constructs, the measurement models for each observed variable, and any constraints on the

Structural Equation Modeling: What Is It?

          Structural equation modeling (SEM) is a statistical technique used to test and estimate relationships between variables. It is a multivariate method that allows researchers to simultaneously examine multiple relationships in a single model.           SEM consists of two types of equations: structural equations and measurement equations. Structural equations describe the relationships between latent (unobserved) variables, while measurement equations describe the relationships between observed variables and latent variables.           SEM allows researchers to test complex models that include multiple latent variables and their relationships with each other and with observed variables. It is commonly used in social and behavioral sciences to test theories and hypotheses about relationships between variables.           To use SEM, researchers typically start by specifying a model that includes a set of latent variables and their relationships with observed variables. They then

Example of ANOVA in R

          ANOVA (analysis of variance) is a statistical test used to compare the means of multiple groups. It is used to determine whether there is a significant difference between the means of the groups. Here is an example of how to perform ANOVA in R:           First, let's say we have a dataset with three variables: "group" (the group to which each observation belongs), "x" (the independent variable), and "y" (the dependent variable). We want to use ANOVA to determine whether there is a significant difference in the mean value of "y" between the groups. First, we need to load the necessary libraries:   library(tidyverse) library(broom)   Next, let's read in the data and take a look at it:   data <- read_csv("data.csv") head(data) #   group x          y # 1     A 1  2.5164708 # 2     A 2  3.4593287 # 3     A 3  4.7047409 # 4     A 4  5.4292901 # 5     A 5  6.8230604 # 6     A 6  7.8731561   Now, let's fit the ANOVA mod

Sample Size Computation using G*Power

       G*Power is a statistical power analysis tool that can be used to determine the sample size required for a given study design. It allows you to specify the desired statistical power, alpha level, and effect size, and then calculates the required sample size. Here's an example of how to use G*Power to perform a sample size calculation: Open G*Power and select the "Sample Size/Power" tab. Select the statistical test that you want to use for your study (e.g. t-test, ANOVA, etc.). Specify the desired statistical power for your study (e.g. 0.8). Specify the alpha level for your study (e.g. 0.05). Specify the effect size that you want to detect in your study. This can be calculated based on your research question and the expected size of the effect. Click the "Calculate" button to calculate the required sample size.      For example, let's say we want to conduct a t-test to compare the means of two groups, and we want to have a statistical power of 0.8 and a

Linear Regression in R

          Linear regression is a statistical method used to model the linear relationship between a dependent variable and one or more independent variables. In this example, the dependent variable is y and the independent variable is x . The goal of the model is to find the line of best fit that describes the relationship between x and y in the data.            First example of linear regression application in R : First, we need to load the necessary libraries: library(tidyverse) library(broom) Next, let's read in the data and take a look at it:   data <- read_csv("data.csv") head(data) #   x          y # 1 1  2.5164708 # 2 2  3.4593287 # 3 3  4.7047409 # 4 4  5.4292901 # 5 5  6.8230604 # 6 6  7.8731561     Now, let's fit the linear regression model:   model <- lm(y ~ x, data=data)     We can then use the summary function to get a summary of the model fit:   summary(model) # Call: # lm(formula = y ~ x, data = data) # # Residuals: #      Min       1Q   Med

Kelebihan perisian GraphPad Prism

     GraphPad Prism ialah perisian analisis data dan grafik yang berkuasa dan mudah digunakan yang biasa digunakan dalam penyelidikan saintifik dan perubatan. Beberapa kelebihan utama GraphPad Prism termasuk: Antara muka intuitif: GraphPad Prism mempunyai antara muka mesra pengguna yang mudah dinavigasi dan difahami, menjadikannya sesuai untuk pengguna yang mempunyai pelbagai tahap kemahiran. Pelbagai ujian statistik: GraphPad Prism menawarkan pelbagai jenis ujian statistik, termasuk ujian-t, ANOVA, regresi tak linear dan banyak lagi. Ia juga mempunyai alatan terbina dalam untuk analisis statistik, seperti pemasangan lengkung, berbilang perbandingan dan ujian post-hoc. Graf boleh disesuaikan: GraphPad Prism membolehkan pengguna menyesuaikan graf mereka dalam pelbagai cara, termasuk memilih jenis graf yang berbeza, menyesuaikan elemen graf seperti label paksi dan legenda, dan menambah anotasi statistik.  Pengurusan data yang mudah: GraphPad Prism mempunyai hamparan terbina dalam yang me

Statistik dan Kecerdasan Buatan

     Statistik dan kecerdasan buatan (artificial intelligence atau AI) adalah bidang yang berbeda yang digunakan untuk menganalisis data dan membuat keputusan berdasarkan data tersebut.      Statistik adalah cabang ilmu yang mempelajari bagaimana mengumpul, menganalisis, menafsir, dan menyajikan data. Statistik berguna untuk mengambil kesimpulan tentang sesuatu populasi berdasarkan sampel yang diambil dari populasi tersebut. Statistik juga dapat digunakan untuk memprediksi kemungkinan terjadinya suatu kejadian di masa depan berdasarkan data masa lalu.      Manakala, kecerdasan buatan adalah cabang teknologi yang mempelajari cara mencipta sistem yang dapat belajar dan membuat keputusan sendiri. Kecerdasan buatan dapat digunakan untuk mengolah dan menganalisis data yang sangat besar dan kompleks, dan untuk menemukan pola dan hubungan yang tidak terlihat oleh manusia. Kecerdasan buatan dapat digunakan dalam berbagai bidang, termasuk perdagangan, pengenalan wajah, dan pengendalian robot.