To calculate sample size for a questionnaire study, you will need to consider a few factors: The type of statistical test you will be using: Different statistical tests have different assumptions and requirements, so you will need to choose a test that is appropriate for your data and research question. The desired level of precision: The sample size should be large enough to provide the desired level of precision in your estimates. For example, if you want to be able to detect small differences between groups, you will need a larger sample size than if you are only interested in detecting large differences. The expected response rate: The sample size should be large enough to account for the expected response rate. If you expect a low response rate, you will need a larger sample size to ensure that you have sufficient data for your analysis. The population size: If the population is small, you may need a larger sample size to ensure that your sample is representative of the populati
Berikut adalah contoh tabel data yang dapat digunakan dalam analisis Split-plot ANOVA tersebut: Dalam contoh ini, pembolehubah tidak bersandar (independent variable) yang terikat pada sampel utama adalah jenis penyakit (Penyakit Jantung atau Penyakit kencing manis), sementara variabel independen yang terikat pada sampel subplot adalah dos ubat (1 mg atau 5 mg). Pembolehubah bersandar (dependent variable) adalah keberkesanan ubat, yang diukur dengan skala 0-1. Berikut adalah contoh analisis Split-plot ANOVA menggunakan R, dengan menggunakan data hipotetis tentang keberkesanan suatu ubat baru pada pesakit dengan berbagai jenis penyakit: # Memuat library yang diperlukan library(ez) # Memuat data data <- read.csv("data_ubat.csv") # Menampilkan struktur data str(data) # Menjalankan analisis Split-plot ANOVA aov_result <- ezANOVA(data = data, dv = .(keberkesanan), wid = .(id_pesakit), within = .(dos),